Journal of Organometallic Chemistry, 149 (1978) C66-C70 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

INSERTION OF N-SULFINYLSULFONAMIDES AND BIS(METHYL-SULFONYL)SULFUR DIIMIDE INTO IRON-CARBON σ BONDS

ROLAND G. SEVERSON and ANDREW WOJCICKI*

The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received January 4th, 1978)

Summary

The N-sulfinylsulfonamides $R'S(O)_2N=S=O(R' = CH_3, p-CH_3C_6H_4)$ insert into the Fe-R bonds of $\eta^5-C_5H_5Fe(CO)_2R(R = CH_3, CH_2C_6H_5)$ to afford $\eta^5-C_5H_5Fe(CO)_2N[S(O)_2R'][S(O)_2R]$. These products undergo oxidation by m-ClC₆H₄C(O)-OOH to $\eta^5-C_5H_5Fe(CO)_2N[S(O)_2R'][S(O)_2R]$ and rearrange on storage to $\eta^5-C_5H_5Fe(CO)_2S(O)[NS(O)_2R']R$. Reaction between the $\eta^5-C_5H_5Fe(CO)_2R$ and $CH_3S(O)_2N=S=NS(O)_2CH_3$ leads to the insertion products $\eta^5-C_5H_5Fe(CO)_2N-[S(O)_2CH_3][S(R)NS(O)_2CH_3]$.

The compounds with cumulated double bonds N-sulfinylamines, RN=S=O, and sulfur diimides, RN=S=NR, may be regarded as close electronic and structural analogues of sulfur dioxide. This analogy is reflected in several aspects of their organic chemistry, e.g., cycloaddition reactions [1-3], as well as in their ability to form transition metal complexes [4-6]. Reported here is a further extension of the comparative chemistry of these cumulenes, namely their behavior toward transition metal—carbon σ bonds. Insertion of SO₂ into metal carbon linkages is a well known reaction [7].

Although there is no detectable interaction between η^5 -C₅H₅Fe(CO)₂CH₃ and each of C₆H₅N=S=O and C₆H₁₁N=S=O at room temperature in a period of 7 h to several days, the complexes η^5 -C₅H₅Fe(CO)₂R (R = CH₃, CH₂C₆H₅) react readily with the more electrophilic N-sulfinylsulfonamides, CH₃S(O)₂N=S=O and p-CH₃C₆H₄S(O)₂N=S=O. Typically, η^5 -C₅H₅Fe(CO)₂R and a slight excess of R'S(O)₂N=S=O in toluene or CHCl₃ were allowed to react at room temperature for 1 h to yield a deep red solution. Excess R'S(O)₂N=S=O was destroyed with 10% H₂O in acetone, solvent was removed, the residue was extracted with CHCl₃, and the extract was dried over MgSO₄ and filtered. Since the products resist crystallization, they were generally isolated by evaporation of the solvent to leave orange-red glasses. Elemental analysis shows them to be 1/1 adducts of the two reactants^{*}, and their N-(alkylsulfinyl)alkanesulfonamidato-N structures (Ia—Id) are inferred from the spectroscopic data set out in Table 1. All complexes I exhibit three IR $\nu(SO_2)$ and $\nu(SO)$ absorptions at 1300, 1146—1135, and 1085—1080 cm⁻¹, which may be compared with those at 1350, 1165, and 1080 cm⁻¹, reported [1] for the organic cycloadducts of 1,3-dienes and RS(O)₂N=S=O (A).

(A)

Complexes Ia—Ic undergo oxidation by m-ClC₆H₄C(O)OOH to the corresponding N-(alkylsulfonyl)alkanesulfonamidato-N derivatives (IIa—IIc)**.

In a typical reaction, Ia—Ic in CH_2Cl_2 was treated with a slight excess of m-ClC₆H₄C(O)OOH, and the resulting solution was stirred for 1 h. Excess acid was neutralized with NaHCO₃ in methanol; then solvent removal, extraction of

 $(a:R = R' = CH_3; b:R = CH_3, R' = p - CH_3C_6H_4; c:R = CH_2C_6H_5, R' = CH_3; d:R = CH_2C_6H_5, R' = p - CH_3C_6H_4)$

^{*}Ia: Found: C, 32.32; H, 3.23; S, 19.18. C, H₁₁ FeNO₅S₂ calcd.: C, 32.45; H, 3.33; S, 19.25%.

Ib: Found: C, 44.85; H, 4.18; S, 15.49. C15H15FeNO5S2 calcd.: C, 44.02; H, 3.69; S, 15.67%.

^{**}Ha: Found: C, 30.85; H, 3.10; S, 18.12. C₉H₁₁FeNO₆S₂ calcd.: C, 30.96; H, 3.18; S, 18.36%.

SPECTROSCOPIC DATA FOR NEW IRON COMPLEXES

TABLE 1

5 210.9(CO), 85.6(C₆H₆), 42.7(2CH₅) 210.9(CO), 86.0(C₄H₅), 60.2(CH₂), 210.1(CO), 87.6(C,H,), 60.6(CH,) 209.7(CO), 87.2(C, H,), 78.0(CH,) (CO)ⁿ, 87.6(C_aH_a), 75.9(CH_a), 212.2, 211.8(CO), 86.0(C,H), 208.8, 208.0(CO), 87.9(C₅H₅), (02SCH3), 39.1(N2SCH3) 212.0, 210.7(CO), 85.8(C5H5), 212.2, 211.6(CO), 86.8(C_aH₆), (CO)ⁿ, 85.8(C,H_s), 43.2, 42.4 45.1 (0, SCH,), 41.9 (08CH,) 59.9(CH₁), 42.8, 42.0(CH₃) 59.4(SCH3), 21.4(CCH3) 66.1 (CH₃), 48.1 (CH₃) ¹³C NMR (6, ppm)^d 42.1(CH_s) 45.6(CH₃) 4.70(C_aH_s), 6.60(OSCH_s), 7.00 4.73(C₅H₅), 5.79, 5.01(CH₂)^m, 1.72(C,Hs), 7.42, 7.81(CHs)^h 4.69(C₈H₅), 6.65(SCH₃), 7.63 5.08(C,H,), 6.90(SCH,), 7.56 4.04(C,H_), 5.72, 6.14(CH_) 5.29(0₆H₅), 5.36(CH₂), 6.95 4.02(C,H,), 5.33(CH₂), 6.99 4.70(C_sH_s), 6.01, 7.04, 7.30 1.77(C_4H6), 7.08(O_3SCH3), 4.90(C₆H₆), 5.61(CH₂) [9] 4.75(C₈H₈), 6.85(CH₈) [9] 4.84(C,Hs), 6.93(2CHs) 8.90(SCH₃), 7.64(CCH₃) H NMR (7, ppm)^C 7.49(0SCH₃) 7.23(CH.) (0,8CH.) (COH.) (CCH.) (CH3) ((H)) (CH,) 1295, 1280, 1145, 1115, 1310, 1295, 1288, 1150, 1821, 1315, 1295, 1135 1275, 1130, 1105, 1030 1300, 1280, 1128, 1012 ν(SO₂), ν(SO), ν(SN) ^b 1088, 1025, 1010 1140, 1020, 1010 1300, 1135, 1080 1300, 1146, 1080 1300, 1140, 1080 1320, 1150, 1140 1325, 1298, 1130 2042, 2003, 1980 ^j 2050, 2005 ^J 2055, 2010 2050, 2000 2070, 2020 2065, 2005 2060, 2015 2059, 2014 2056, 2012 2070, 2022 IR (om⁻¹) r(co)a Complex IIIa IIIc ž la ^e dill IVa Ia g <u>1</u> 2 <u>ಲ</u>

resonances of the $C_{\mu}H_{s}$, CH_{3} , and CH_{3} , groups are listed. ^d in CDCl₃ solution, ppm downfield from Si(CH₃)_s. Only resonances of the CO, $C_{6}H_{6}$, CH_{3} , and OH_{3} , groups are listed. ^d Parent peak at m/e 333 in the mass spectrum. ^f Complex not isolated pure. ^{ff} η^{5} - $C_{8}H_{8}Fe(CO)_{3}S(O)_{3}CH_{3}$. ^h η^{5} - $C_{9}H_{6}Fe(CO)_{3}S(O)_{$ ^a In CHCl₃ solution except as noted. All absorptions are strong. ^b In Nujol mull, Only strong absorptions are listed. ^c In CDCl₃ solution except as noted. Only accurate measurement. the residue with CH_2Cl_2 , and evaporation to dryness of the extract yielded a red solid, which may be recrystallized from $1/1 CH_2Cl_2$ /hexane at low temperature. The synthesis of IIa from Ia in this manner is particularly illuminating with respect to the assignment of structure. The two CH_3 signals in each of the ¹H and ¹³C NMR spectra of Ia (Table 1) collapse to a single resonance upon oxidation of Ia to IIa. The equivalence of the CH_3 groups in IIa is consistent only with the proposed symmetrical *N*-(methylsulfonyl)methanesulfonamidato-*N* structure. Moreover, these data also corroborate the *N*-(methylsulfinyl)methanesulfonamidato-*N* structural assignment to the precursor Ia.

-2

Storage of Ia-Ic in the solid or in solution leads to the formation of yelloworange solids which appear to be the rearranged N-(alkylsulfonyl)alkanesulfinimidato-S complexes (IIIa-IIIc). For example, IIIc was isolated by slow (several days) crystallization from saturated CHCl₃ solution of Ia at -10° C. Support for the proposed structure is derived from the spectroscopic data included in Table 1. Thus, the ¹H NMR signals of the CH_3 and CH_2 groups bound to the sulfinyl sulfur experience a considerable (0.60-0.95 ppm) downfield shift from the corresponding signals of Ia–Ic. A similar deshielding of the O_2SCH_3 and O_2SCH_2 protons has been noted upon isomerization of O-bonded to S-bonded sulfinato complexes [8]. In the ¹³C NMR spectra, the resonances of each of the carbonyl (210.1-208.0), C₂H₅ (87.9-87.2), and, especially, CH₂ (78.0-75.9) and CH₃ (60.6–59.4 ppm) groups bound to sulfur, occur in distinct narrow ranges for both III and similar, previously reported [9], S-sulfinato complexes. However, these ranges are different from those for the corresponding resonances of complexes I, II, and IV (CO, 212.2-210.7; C₅H₅, 86.0-85.6; SCH₂, 65.1-59.9; SCH₃ 45.6-39.1 ppm).

The reaction of η^5 -C₅H₅Fe(CO)₂R (R = CH₃, CH₂C₆H₅) with excess CH₃S(O)₂-N=S=NS(O)₂CH₃ in CHCl₃ leads to the formation of a deep red solution. Unreacted, sparingly soluble sulfur diimide was filtered off and the product formulated as IVa-IVb^{*} was crystallized at low temperature from CHCl₃.

$$(a:R = CH_3; b:R = CH_2C_6H_5)$$

Spectroscopic data of IVa—IVb are incorporated into Table 1. In the IR 1350—950 cm⁻¹ region strong stretching absorptions of the SO₂ and SN groups occur which are similar to those at 1370—1345, 1180—1160 (ν (SO)₂) of NSO₂), 1310—1280, 1160—1120 (ν (SO₂) of =NSO₂), and 1010—975 cm⁻¹ (ν (SN)) re-

^{*}IVb: Found: C, 39.55; H, 3.86; S, 18.92. C₁₆H₁₈FeN₂O₆S₃ calcd.: C, 39.51; H, 3.73; S, 19.78%.

ported [10] for the organic cycloadducts of 1,3-butadiene and RS(O)₂N=S=NS-(O)₂R (B). Each of the ¹H and ¹³C NMR spectra of IVa shows three CH₃ signals, consistent with the proposed N-[S-methyl-N'-(methylsulfonyl)sulfinimidoyl]-methanesulfonamidato-N structure. The complexes do not exhibit fluxional behavior at ambient temperatures.

The foregoing reactions demonstrate that $RS(O)_2N=S=O$ and $CH_3S(O)_2N=S=NS-(O)_2CH_3$, like SO₂ itself, readily undergo insertion into the Fe—R bonds of η^5 -C₅H₅Fe(CO)₂R. As with SO₂, the initial products contain the harder, in this case nitrogen, donor atom bonded to the metal. It remains to be elucidated whether all three reactions are similar mechanistically; studies of the stereochemistry at α -carbon of the insertion of RS(O)₂N=S=O and RS(O)₂N=S=NS(O)₂R are in progress toward this end.

Acknowledgement

The authors gratefully acknowledge financial support of this research by the National Science Foundation.

References

- 1 G. Kresze, A. Maschke, R. Albrecht, K. Bederke, H.P. Patzschke, H. Smalla and A. Trede, Angew. Chem. Int. Ed., 1 (1962) 89.
- 2 G. Kresze and W. Wucherpfennig, Angew. Chem. Int. Ed., 6 (1967) 149.
- 3 H.J. Backer and J. Strating, Rec. Trav. Chim. Pays-Bas, 62 (1943) 815.
- 4 D.M. Blake and J.R. Reynolds, J. Organometal. Chem., 113 (1976) 391 and cited ref.
- 5 R. Meij, T.A.M. Kaandorp, D.J. Stufkens and K. Vrieze, J. Organometal. Chem., 128 (1977) 203 and cited ref.
- 6 R.R. Ryan and P.G. Eller, Inorg. Chem., 15 (1976) 494.
- 7 A. Wojcicki, Advan. Organometal. Chem., 12 (1974) 31.
- 8 S.E. Jacobson, P. Reich-Rohrwig and A. Wojcicki, Inorg. Chem., 12 (1973) 717.
- 9 J.P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 88 (1966) 4862.
- 10 W. Wucherpfennig and G. Kresze, Tetrahedron Letters, 15 (1966) 1671.

C70