Journal of Organometallic Chemistry, 149 (1978) C66-C70
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

INSERTION OF N-SULFINYLSULFONAMIDES AND BIS(METAYLSULFONYL)SULFUR DIIMIDE INTO IRON-CARBON σ BONDS

ROLAND G. SEVERSON and ANDREW WOJCICKI*
The McPherson Chemical Laboratory, The Onio State University, Columbus, Ohio 43210 (U.S.A.)
(Received January 4th, 1978)

Summary

The N-sulfinylsulfonamides $\mathrm{R}^{\prime} \mathrm{S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}\left(\mathrm{R}^{\prime}=\mathrm{CH}_{3}, p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ insert into the $\mathrm{Fe}-\mathrm{R}$ bonds of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ to afford $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}$ $(\mathrm{CO})_{2} \mathrm{~N}\left[\mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{\prime}\right][\mathrm{S}(\mathrm{O}) \mathrm{R}]$. These products undergo oxidation by $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})$ OOH to $\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~N}\left[\mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{\prime}\right]\left[\mathrm{S}(\mathrm{O})_{2} \mathrm{R}\right]$ and rearrange on storage to $n^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~S}(\mathrm{O})\left[\mathrm{NS}(\mathrm{O})_{2} \mathrm{R}^{\prime}\right] \mathrm{R}$. Reaction between the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}$ and $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{NS}(\mathrm{O})_{2} \mathrm{CH}_{3}$ leads to the insertion products $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~N}-$ $\left[\mathrm{S}(\mathrm{O})_{2} \mathrm{CH}_{3}\right]\left[\mathrm{S}(\mathrm{R}) \mathrm{NS}(\mathrm{O})_{2} \mathrm{CH}_{3}\right]$.

The compounds with cumulated double bonds N-sulfinylamines, $\mathrm{RN}=\mathrm{S}=\mathrm{O}$, and sulfur diimides, $\mathrm{RN}=\mathrm{S}=\mathrm{NR}$, may be regarded as close electronic and structural analogues of sulfur dioxide. This analogy is reflected in several aspects of their organic chemistry, e.g., cycloaddition reactions [1-3], as well as in their ability to form transition metal complexes [4-6]. Reported here is a further extension of the comparative chemistry of these cumulenes, namely their behavior toward transition metal-carbon σ bonds. Insertion of SO_{2} into metalcarbon linkages is a well known reaction [7].

Although there is no detectable interaction between $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{CH}_{3}$ and each of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ and $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ at room temperature in a period of 7 h to several days, the complexes $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ react readily with the more electrophilic N -sulfinylsulfonamides, $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ and $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$. Typically, $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}$ and a slight excess of $\mathrm{R}^{\prime} \mathrm{S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ in toluene or CHCl_{3} were allowed to react at room temperature for 1 h to yield a deep red solution. Excess $\mathrm{R}^{\prime} \mathrm{S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ was destroyed with $10 \% \mathrm{H}_{2} \mathrm{O}$ in acetone, solvent was removed, the residue was extracted with CHCl_{3}, and the extract was dried over MgSO_{4} and filtered. Since the products resist crystallization, they were generally isolated by evaporation of the solvent to leave orange-red glasses. Elemental analysis shows them to be $1 / 1$ adducts of the
two reactants*, and their N-(alkylsulfinyl)alkanesulfonamidato- N structures (Ia-Id) are inferred from the spectroscopic data set out in Table 1. All complexes I exhibit three IR $\nu\left(\mathrm{SO}_{2}\right)$ and $\nu(\mathrm{SO})$ absorptions at $1300,1146-1135$, and 1085-1080 cm^{-1}, which may be compared with those at 1350,1165 , and $1080 \mathrm{~cm}^{-1}$, reported [1] for the organic cycloadducts of 1,3 -dienes and $\mathrm{RS}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ (A).

(A)

Complexes Ia-Ic undergo oxidation by $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OOH}$ to the corresponding N-(alkylsulfonyl)alkanesulfonamidato- N derivatives (IIa-IIc)**.

In a typical reaction, $\mathrm{Ia}-\mathrm{Ic}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with a slight excess of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OOH}$, and the resulting solution was stirred for 1 h . Excess acid was neutralized with NaHCO_{3} in methanol; then solvent removal, extraction of

$\left.t a: R=R^{\prime}=\mathrm{CH}_{3}: \mathrm{b}: \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{P}-\mathrm{CH}_{3} \mathrm{C}_{8_{4}} \mathrm{H}_{4}: \mathrm{C}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{CH}_{3} ; \mathrm{d}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{8} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{P}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$

[^0]TABLE 1
SPECCROSCOPIC DATA FOR NEW IRON COMPLEXES

the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and evaporation to dryness of the extract yielded a red solid, which may be recrystallized from $1 / 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at low temperature. The synthesis of IIa from Ia in this manner is particularly illuminating with respect to the assignment of structure. The two CH_{3} signals in each of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ia (Table 1) collapse to a single resonance upon oxidation of Ia to IIa. The equivalence of the CH_{3} groups in IIa is consistent only with the proposed symmetrical N-(methylsulfonyl)methanesulfonamidato- N structure. Moreover, these data also corroborate the N-(methylsulfinyl)methanesulfon-amidato- N structural assignment to the precursor Ia.

Storage of Ia-Ic in the solid or in solution leads to the formation of yelloworange solids which appear to be the rearranged N-(alkylsulfonyl)alkanesulfin-imidato-S complexes (IIIa-IIIc). For example, IIIc was isolated by slow (several days) crystallization from saturated CHCl_{3} solution of Ia at $-10^{\circ} \mathrm{C}$. Support for the proposed structure is derived from the spectroscopic data included in Table 1. Thus, the ${ }^{1} \mathrm{H}$ NMR signals of the CH_{3} and CH_{2} groups bound to the sulfinyl sulfur experience a considerable ($0.60-0.95 \mathrm{ppm}$) downfield shift from the corresponding signals of Ia -Ic. A similar deshielding of the $\mathrm{O}_{2} \mathrm{SCH}_{3}$ and $\mathrm{O}_{2} \mathrm{SCH}_{2}$ protons has been noted upon isomerization of O-bonded to S-bonded sulfinato complexes [8]. In the ${ }^{13} \mathrm{C}$ NMR spectra, the resonances of each of the carbonyl (210.1-208.0), $\mathrm{C}_{2} \mathrm{H}_{5}$ (87.9-87.2), and, especially, CH_{2} (78.0-75.9) and CH_{3} (60.6-59.4 ppm) groups bound to sulfur, occur in distinct narrow ranges for both III and similar, previously reported [9], S-sulfinato complexes. However, these ranges are different from those for the corresponding resonances of complexes I, II, and IV $\left(\mathrm{CO}, 212.2-210.7 ; \mathrm{C}_{5} \mathrm{H}_{5}, 86.0-85.6 ; \mathrm{SCH}_{2}, 65 . \mathrm{i}-59.9 ; \mathrm{SCH}_{3}\right.$ 45.6-39.1 ppm).

The reaction of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ with excess $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O})_{2^{-}}$ $\mathrm{N}=\mathrm{S}=\mathrm{NS}(\mathrm{O})_{2} \mathrm{CH}_{3}$ in CHCl_{3} leads to the formation of a deep red solution. Unreacted, sparingly soluble sulfur diimide was filtered off and the product formulated as IVa-IVb* was crystallized at low temperature from $\mathbf{C H C l}_{3}$.

Spectroscopic data of IVa-IVb are incorporated into Table 1. In the IR $1350-950 \mathrm{~cm}^{-1}$ region strong stretching absorptions of the SO_{2} and SN groups occur which are similar to those at $1370-1345,1180-1160\left(\nu(\mathrm{SO})_{2}\right)$ of $\left.\mathrm{NSO}_{2}\right)$, $1310-1280,1160-1120\left(\nu\left(\mathrm{SO}_{2}\right)\right.$ of $\left.=\mathrm{NSO}_{2}\right)$, and $1010-975 \mathrm{~cm}^{-1}(\nu(\mathrm{SN}))$ re-

[^1]ported [10] for the organic cycloadducts of 1,3 -butadiene and $R S(O)_{2} N=S=N S$ (O) $)_{2}$ (B). Each of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of IV a shows three CH_{3} signals, consistent with the proposed N-[S-methyl- \boldsymbol{N}^{\prime}-(methylsulfonyl)sulfinimidoyl]-methanesulfonamidato- N structure. The complexes do not exhibit fluxional behavior at ambient temperatures.

(B)

The foregoing reactions demonstrate that $\mathrm{RS}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{NS}$ $(\mathrm{O})_{2} \mathrm{CH}_{3}$, like SO_{2} itself, readily undergo insertion into the $\mathrm{Fe}-\mathrm{R}$ bonds of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}$. As with SO_{2}, the initial products contain the harder, in this case nitrogen, donor atom bonded to the metal. It remains to be elucidated whether all three reactions are similar mechanistically; studies of the stereochemistry at α-carbon of the insertion of $\operatorname{RS}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{O}$ and $\mathrm{RS}(\mathrm{O})_{2} \mathrm{~N}=\mathrm{S}=\mathrm{NS}(\mathrm{O})_{2} \mathrm{R}$ are in progress toward this end.

Acknowledgement

The authors gratefully acknowledge financial support of this research by the National Science Foundation.

References

1 G. Kresze, A. Maschke, R. Albrecht. K. Bederke, H.P. Patzschke, H. Smalla and A. Trede, Angew. Chem. Int. Ed.. 1 (1962) 89.
2 G. Kresze and W. Wucherpfennig, Angew. Chem. Int. Ed., 6 (1967) 149.
3 Fi.J. Backer and J: Strating, Rec. Trav. Chim. Pays-Bas, 62 (1943) 815.
4 D.M. Blake and J.R. Reynolds, J. Organometal. Chem. 113 (1976) 391 and cited ref.
5 R. Meif, T.A.M. Kaandorp, D.J. Stuftens and K. Vrieze, J. Organometal. Chem., 128 (1977) 203 and cited ref.
6 R.R. Ryan and P.G. Eller, Inorg. Chem., 15 (1976) 494.
7 A. Wofcicki, Advan. Organometal. Chem., 12 (1974) 31.
8 S.E. Jacobson, P. Reich-Rohzwig and A. Wojeicki, Lnorg, Chem. 12 (1973) 717.
9 J.P. Bibler and A. Wericicki, J. Amer. Chem. Soc. 88 (1966) 4862.
10 W. Wucherpfennig and G. Kresze. Tetrahedron Jetters, 15 (1966) 1671.

[^0]: ${ }^{*}$ Ia: Found: C. 32.32; $\mathrm{FI}, 3.23 ; \mathrm{S}, 19.18 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FeNO}_{5} \mathrm{~S}_{2}$ calcd.: $\mathrm{C} .32 .45 ; \mathrm{H}, 3.33 ; \mathrm{S}, 19.25 \%$.
 Ib: Found: C, $44.85 ; \mathrm{H}, 4.18 ; \mathrm{S}, 15.49 . \mathrm{C}_{15} \mathrm{H}_{1 s} \mathrm{FeNO}_{5} \mathrm{~S}_{2}$ calcd.: $\mathrm{C}, 44.02 ; \mathrm{H}, 3.69 ; \mathrm{S}, \geq 5.67 \%$.
 **IIa: Found: C, 30.85; H, 3.10; S, 18.12. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FeNO}_{6} \mathrm{~S}_{2}$ calcd.: C, 30.96; H, 3.18; S, 18.36\%.

[^1]: ${ }^{*}$ IVb: Found: $\mathrm{C}, 39.55 ; \mathrm{H}, 3.86 ; \mathrm{S}, 18.92 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FeN}_{2} \mathrm{O}_{6} \mathrm{~S}_{3}$ calcd.: $\mathrm{C}, 39.51$; $\mathrm{H}, 3.73 ; \mathrm{S}, 19.785$.

